Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

4-(Diphenylphosphinoyl)-3-methyl-*N*-phenyl-1,2-isoxazole-5-carboxamide

Rainer Renè Böduel, Gregor Reeske, Markus Schürmann, Hans Preut and Terence Nigel Mitchell

Copyright © International Union of Crystallography

This paper is published electronically. It meets the data-validation criteria for publication in *Acta Crystallographica Section C*. The submission has been checked by a Section C Co-editor though the text in the "Comments" section is the responsibility of the authors.

electronic papers

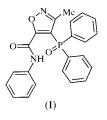
Acta Crystallographica Section C **Crystal Structure** Communications ISSN 0108-2701

4-(Diphenylphosphinoyl)-3-methyl-Nphenyl-1,2-isoxazole-5-carboxamide

Rainer Renè Böduel, Gregor Reeske, Markus Schürmann, Hans Preut* and Terence Nigel Mitchell

Fachbereich Chemie, Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany

Correspondence e-mail: uch002@uxp1h.hrz.uni-dortmund.de


Received 11 January 2000 Accepted 18 January 2000

Data validation number: IUC0000020

The title compound, $C_{23}H_{19}N_2O_3P$, was prepared by the reaction of ethynyldiphenylphosphine oxide with phenyl isocyanate, triethylamine and nitoethane in benzene. The molecular structure is stabilized by an intramolecular N- $H \cdot \cdot \cdot O$ hydrogen bond.

Comment

Ethynyldiphenylphosphine oxide (Charrier et al., 1966) was treated by the method of Mukaiyama & Hoshino (1960) with phenyl isocyanate, triethylamine and nitroethane in benzene to give 4-(diphenylphosphinoyl)-3-methylisoxazole and 5-(diphenylphosphinoyl)-3-methylisoxazole in a 1:1 ratio. The title compound, (I), was formed as a by-product in 16% yield.

Experimental

The title compound was obtained in 16% yield from the reaction of ethynyldiphenylphosphine oxide with phenyl isocyanate, triethylamine and nitroethane in benzene (Charrier et al., 1966; Mukaiyama & Hoshino, 1960). The solvent was removed and the residue chromatographed on a silica-gel column with ethyl acetate as eluent. Colourless crystals were grown by slow evaporation from the ethyl acetate solution at room temperature, m.p. 467-468 K.

Crystal data

$C_{23}H_{19}N_2O_3P$	Z = 2
$M_r = 402.37$	$D_x = 1.328 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 7.4055 (2) Å	Cell parameters from 11324
b = 10.3008 (4) Å	reflections
c = 13.6543 (5) Å	$\theta = 3.43 - 25.02^{\circ}$
$\alpha = 79.896 \ (1)^{\circ}$	$\mu = 0.164 \text{ mm}^{-1}$
$\beta = 79.283 \ (2)^{\circ}$	T = 291 (1) K
$\gamma = 85.338 \ (2)^{\circ}$	Block, colourless
V = 1006.27 (6) Å ³	$0.30 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer 360 frames via ω -rotation ($\Delta \omega = 1^\circ$) at different θ values and two times 20 s per frame Absorption correction: none 11 324 measured reflections 3308 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.096$ S = 0.9983308 reflections 263 parameters

H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0617P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.180 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.247 \text{ e } \text{\AA}^{-3}$

2477 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.017$ $\theta_{\rm max} = 25.02^{\circ}$

 $h = -7 \rightarrow 7$

 $k = -12 \rightarrow 12$

 $l = -15 \rightarrow 16$

Table 1

Hydrogen-bonding geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
N1-H6···O2	0.86	1.87	2.726 (2)	172

Crystal decay was monitored by repeating the initial frames at the end of data collection. Analysing the duplicate reflections there were no indications for any decay. H atoms were placed geometrically and refined with a riding model (including free rotation about C-C) with $U_{\rm iso}$ constrained to be $1.5U_{\rm eq}$ of the carrier atom.

Data collection: Nonius KappaCCD software; cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PARST95 (Nardelli, 1995).

We thank the Fonds der Chemischen Industrie for financial support.

References

- Charrier, C., Chodkiewicz, W. & Cadiot, P. (1966). Bull. Soc. Chim. Fr. pp. 1002-1011.
- Mukaiyama, T. & Hoshino, T. (1960). J. Am. Chem. Soc. p. 82. 5339.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Charter and R. M. Sweet, pp. 307-326. London: Academic Press.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.